Informatica to Fabric Migration | CONFIDENTIAL

INFORMATICA TO FABRIC
MIGRATION GUIDE

Mappings • Workflows • Transformations • Sessions • Best Practices

Version 1.0 | January 2026

Table of Contents

1. Migration Overview
This guide covers migrating Informatica PowerCenter mappings and workflows to Microsoft Fabric using Dataflow Gen2, Notebooks, and Pipelines.
1.1 Concept Mapping
	Informatica
	Fabric Equivalent

	Mapping
	Dataflow Gen2 / Notebook

	Workflow
	Pipeline

	Session
	Pipeline Activity

	Source/Target
	Connection + Dataset

	Transformation
	Dataflow Transform / PySpark

	Mapplet
	Reusable Dataflow / Function

	Parameter File
	Pipeline Parameters

	Workflow Variable
	Pipeline Variable

1.2 Target Platform Selection
	Scenario
	Fabric Target
	Best For

	Simple ETL
	Dataflow Gen2
	Visual design, low-code

	Complex logic
	Notebook
	Custom code, large data

	Bulk copy
	Copy Activity
	Fast data movement

2. Transformation Mapping
2.1 Common Transformations
	Informatica
	Dataflow Gen2
	PySpark

	Source Qualifier
	Source
	spark.table()

	Expression
	Derived Column
	withColumn()

	Filter
	Filter
	filter()

	Joiner
	Join
	join()

	Lookup
	Lookup
	join() or broadcast

	Aggregator
	Aggregate
	groupBy().agg()

	Sorter
	Sort
	orderBy()

	Router
	Conditional Split
	Multiple filters

	Union
	Union
	union()

	Normalizer
	Unpivot
	explode()

2.2 Expression Transformation → Derived Column
Informatica Expression:
 IIF(CLAIM_AMT > 10000, 'HIGH', 'LOW')
 SUBSTR(MEMBER_ID, 1, 3)
 TO_DATE(DATE_STR, 'YYYY-MM-DD')

PySpark Equivalent:
from pyspark.sql.functions import *

df = df.withColumn('risk_level',
 when(col('claim_amt') > 10000, 'HIGH').otherwise('LOW')
).withColumn('member_prefix',
 substring(col('member_id'), 1, 3)
).withColumn('service_date',
 to_date(col('date_str'), 'yyyy-MM-dd')
)

3. Lookup Transformation
3.1 Connected Lookup
Informatica: Connected Lookup on MEMBER table
 Lookup Condition: MEMBER_ID = IN_MEMBER_ID
 Return: MEMBER_NAME, DOB

PySpark (Join):
members = spark.table('dim_member')
claims = spark.table('fact_claims')

result = claims.join(
 members.select('member_id', 'member_name', 'dob'),
 on='member_id',
 how='left'
)
3.2 Unconnected Lookup (Function-style)
Informatica: :LKP.GET_MEMBER_NAME(member_id)

PySpark (Broadcast Join for small lookups):
from pyspark.sql.functions import broadcast

member_lookup = spark.table('dim_member').select('member_id', 'member_name')

result = claims.join(
 broadcast(member_lookup),
 on='member_id',
 how='left'
)
3.3 Lookup with Default Value
Informatica: Return 'UNKNOWN' if lookup fails

PySpark:
result = claims.join(member_lookup, 'member_id', 'left')
result = result.withColumn('member_name',
 coalesce(col('member_name'), lit('UNKNOWN'))
)

4. Aggregator Transformation
4.1 Basic Aggregation
Informatica Aggregator:
 Group By: REGION, LOB
 Output: SUM(CLAIM_AMT), COUNT(*)

PySpark:
summary = claims.groupBy('region', 'lob').agg(
 sum('claim_amt').alias('total_claims'),
 count('*').alias('claim_count')
)
4.2 Sorted Input Aggregation
Informatica: Sorted input for performance

PySpark: Spark handles partitioning automatically
Repartition for better performance on large data
claims_repartitioned = claims.repartition('region', 'lob')
summary = claims_repartitioned.groupBy('region', 'lob').agg(...)
summary.write.mode('overwrite').saveAsTable('gold.claim_summary')
4.3 Window Aggregations
Informatica: Running total within group

PySpark Window:
from pyspark.sql.window import Window

window_spec = Window.partitionBy('member_id').orderBy('service_date')

result = claims.withColumn('running_total',
 sum('claim_amt').over(window_spec)
)

5. Workflow → Pipeline
5.1 Sequential Workflow
Informatica Workflow:
 Start → Session1 → Session2 → Session3 → End

Fabric Pipeline:
{
 "activities": [
 { "name": "Load_Bronze", "type": "Notebook", ... },
 { "name": "Transform_Silver", "type": "Notebook",
 "dependsOn": [{ "activity": "Load_Bronze" }] },
 { "name": "Publish_Gold", "type": "Notebook",
 "dependsOn": [{ "activity": "Transform_Silver" }] }
]
}
5.2 Parallel Sessions
Informatica: Link A and Link B run in parallel

Fabric: No dependency = parallel execution
 Load_Claims (no dependency)
 Load_Members (no dependency)
 Join_Data (depends on both)
5.3 Decision/Router Task
Informatica: Decision task based on variable

Fabric: If Condition Activity
{
 "name": "Check_Row_Count",
 "type": "IfCondition",
 "expression": "@greater(activity('Get_Count').output.count, 0)",
 "ifTrueActivities": [...],
 "ifFalseActivities": [...]
}

6. Best Practices
6.1 Migration Guidelines
1. Start with simple mappings for learning
1. Use Dataflow Gen2 for visual migrations
1. Convert complex logic to PySpark notebooks
1. Parameterize all environment-specific values
1. Test with production data volumes
1. Validate row counts and data quality
6.2 Performance Optimization
1. Use broadcast joins for small lookup tables
1. Partition data by frequently filtered columns
1. Cache intermediate DataFrames if reused
1. Avoid UDFs when built-in functions exist
1. Monitor Spark UI for bottlenecks
6.3 Common Challenges
	Challenge
	Solution

	Complex mapplets
	Convert to Python functions

	Sequence Generator
	Use monotonically_increasing_id()

	Update Strategy
	Use MERGE or Delta upsert

	Stored Procedures
	Script Activity or Notebook

Appendix: Document Information
	Document Title
	Informatica to Fabric Migration Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
